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Abstract. An overview is given of the paper by Met-
ropolis et al. that has formed the basis for Monte Carlo
statistical mechanics simulations of atomic and molec-
ular systems.
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1 Background

For many-particle systems in classical statistical me-
chanics, the key numerical problem is the solution of the
configurational integral that appears in the averages for

a property Q (Egs. 1, 2).
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These equations are for the canonical NVT  en-
semble where P(X) is the Boltzmann factor, E(X) is
the total potential energy, f = 1/kT, and the integrals
are taken over all possible geometrical configurations,
X, of the system. Oy represents the contribution from
the kinetic energy, which is taken as separable from
the configurational contribution. For N particles, X
has about 3N dimensions or coordinates. In addition,
at liquid or solid densities most arbitrary choices of X
would have overlapping particles with low probability,
P(X), and, therefore, they would contribute little to
the average. Consequently, a brute-force Monte Carlo
solution of the configurational integral by random
selection of configurations, X, becomes impractical for
more than a few particles with typical potential-energy
functions.

P(X) = exp[—

2 Key contribution

In their classic paper, Metropolis et al. [1] recognized
that a practical solution for the configurational integrals
could be obtained by a modified Monte Carlo procedure
where “instead of choosing configurations randomly,
then weighting them with exp(—E/kT), we choose
configurations with a probability exp(—E/kT) and weight
them evenly.” With this procedure and converting the
integral to a sum over discrete configurations, Eqgs. (1
and 2) are simplified to Eq. (3), where L is the number
of configurations considered and Xy indicates a Met-
ropolis-sampled configuration.
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The Metropolis algorithm involves generation of a
chain of configurations. When the system is at configu-
ration i, an attempted move to another configuration j is
considered. The attempted move can be accepted and j is
the next configuration in the chain, or the move is re-
jected, i repeats in the chain and another attempted
move is tried. The decision to move from i to j is de-
termined from a probability p = m;/n;, where for the
NVT ensemble the Boltzmann factor (Eq. 4)

mj = exp(—PE;) (4)

is appropriate. Then, if p > 1, which for the NVT
ensemble means E; < E; (the potential energy went
down), the move is accepted. If p < 1, p is compared
to a random number x between 0 and 1, and if p > x, the
move is still accepted, otherwise j is rejected and i
repeats. In summary, configuration j is accepted with a
probability min[l, n;/n;]. The chain of configurations
generated in this way provides the Boltzmann-weighted
configurations that are needed in Eq. (3). It is apparent
that the Metropolis sampling, while allowing the energy
to go up, focuses on low-energy configurations, which
contribute the most to the Boltzmann averages. Never-
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theless, care is required to guarantee convergence of the
calculations and different computed properties converge
at different rates [2, 3].

One could imagine that the Metropolis sampling al-
gorithm could have been conceived by inspection from
considering a simple one-particle system with two states,
rand s. If we let g, — g, = kT In 3, for example, then the
Boltzmann factor n,/mn; = 1/3 and the algorithm needs
to sample state s 3 times on average for every time it
samples state . This could be achieved by a walk where
when in state r, the next step is back to state s, and when
in state s, state s needs to repeat an average of 2 times
before a transition to r. For example, the following walk
would work.

State r: X X X X X X X
State s:

However, to make the process more general and
random, the decision on whether to repeat s should be
based on a random number that is compared to «, /7. A
transition from a lower-energy state, s, to a higher-
energy one, r, needs to occur for n,./m; of the attempted
moves.

3 Refinements, sampling and some details

Another issue is the size, N, of a sample that would be
adequate to represent a liquid. To this end, Metropolis
et al. [1] also introduced ‘“‘periodic boundary condi-
tions”, which lead to simulating a liquid by explicitly
considering a relatively small number of molecules,
about 100-1000. Though they only treated hard disks in
two dimensions in their paper, ‘“‘extension to three
dimensions is obvious.” In three dimensions, the mol-
ecules are typically in a cubic or orthorhombic cell,
which is surrounded by 26 images of itself. If on moving
a molecule to create a new configuration it passes
through a wall, then an image of it reenters the central
cell through the opposite face. Thus, one just needs to
keep track of the contents of the central cell.

With rigid molecules, a move normally consists of
picking one molecule at random, translating it randomly
in all three Cartesian directions and randomly rotating it
about one randomly chosen Cartesian axis. For flexible
molecules, both the external and internal degrees of
freedom need to be sampled. The external ones are
handled in the same way as for rigid molecules. The
internal ones are usually treated by representing the
molecule by a Z matrix (r, v, ¢ internal coordinates).
Upon an attempted move, the variable entries in the Z
matrix are changed randomly within specified ranges
and the molecule is rebuilt [4]. The use of internal co-
ordinates also facilitates the enforcement of constraints,
i.e., specification of bond lengths, bond angles and di-
hedral angles that are fixed, and avoids the introduction
of additional terms in Eq. (4) with space-fixed coordi-
nate systems [3]. It is clear that the acceptance rate is
affected by the choices of ranges for the molecular
translations and rotations; reasonable convergence be-
havior is normally obtained by adjusting the ranges such
that 20-50% of the attempted moves are accepted.

An advantage of Monte Carlo simulations is that
modified sampling procedures can potentially be devised
to enhance convergence. One example is the preferential
sampling of solvent molecules near a solute by at-
tempting to move them more frequently than more dis-
tant solvent molecules [5]. The only caveat is to be sure
that the intrinsic probabilities, i.e., in the absence of the
Boltzmann factor, of states i and j are properly reflected.
If this is not the case, then 7; in Eq. (4) needs to include
an appropriate Jacobian term representing the phase-
space volume for state j. For example, with an atomic
liquid, if one wanted to sample in spherical rather
than Cartesian coordinates, the required Jacobian is
rf sing;, and the acceptance probability would be
min(1, (r7 sin @, /r7 sinp;) exp(—f (E; — E;))].  Another
attractive point is that it is straightforward to execute
Monte Carlo simulations in the NPT ensemble by
including volume terms in Eq. (4) to yield Eq. (5) and
by allowing the volume of the central cell to vary [2, 3].

n; = exp(—PH,)V;" = exp[~B(E; + PV; — NksT In V)]
(5)

The principal potential pitfall is that there is no ul-
timate guarantee that convergence of a property or of
the simulation as a whole has been reached. Pathological
cases can be constructed. For example, one could set up
a simulation for a liquid secondary amide at 25°C with
all of the monomers initially in the cis conformation.
Since the rotational barrier is about 20 kcal/mol for
conversion of cis to trans, under normal Monte Carlo
conditions a conversion would be an exceedingly rare
event. The system could be equilibrated and the energy
seemingly converged, but the simulated liquid is meta-
stable since with an energy difference of about 2.5 kcal/
mol, 98.5% of the monomers should be trans. However,
in general, for typical organic liquids with standard force
fields, convergence of most key properties such as heat
of vaporization, density, and radial distribution func-
tions is not problematic [6]. In fact, Monte Carlo sim-
ulations have been shown to be more efficient than
molecular dynamics for liquid hexane [7]. Such Monte
Carlo calculations are trivial to set up with modern
software [4] and can be executed for one state point in a
few hours on Pentium-II-based personal computers [§].
For dilute solutions of a single flexible solute in a sol-
vent, convergence of the conformational properties of
the solute can understandably be more taxing as statis-
tics are only being accumulated on one molecule rather
than on N.
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Figure 1.



Overall, Metropolis et al. introduced the sampling

method and periodic boundary conditions that remain
at the heart of Monte Carlo statistical mechanics simu-
lations of fluids. This was one of the major contributions
to theoretical chemistry of the twentieth century.
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